Home » Ground robots, Ideas, Issues, Programming, Refining the project, Testing » Improving the kiwi drive: tests with a compass sensor

Improving the kiwi drive: tests with a compass sensor

After hours of testing (or “playing”, depends on how you appreciate remote-controlled cars), we’ve been forced to acknowledge that our omnidirectional robot was not completely accurate: after several movements in random directions, the robot has changed its orientation compared its inner one. The robot is indeed omnidirectional in the way that it can move in any direction but we still need to define the “front” so as to have a reference when we want it to move in a desired direction.

So this was without a doubt a problem we had to focus on even if  we knew that the robot won’t ever be 100% accurate over a full experiment. Thus, we came out with the idea of mounting a compass sensor on the robots. This way, we can set a “reference angle” for the robot and it will move according to this angle. For instance, if the north is the reference and we want the robot to go towards the north, it will move in the right direction even if it’s not facing it. The principle is very easy: we’re taking the angle given by the controller (so 0° if it’s the north) and when the brick receives the command, it looks what direction it’s facing and corrects the angle accordingly (so if it was facing the south, it would adjust the angle with +180°).

 

 

As you can see, we tried different spots for the compass sensor. On the left video, the compass is quite low, very close to the motors and the induced magnetic fields by the motors alter the compass sensor measurements which leads to a poor driving behavior. On the right video, we set up the sensor far from the motors and the robot’s behavior is way more suitable as you can observe. Nonetheless, we had another problem: the robot has a random behavior in certain spots. Even if the robot is asked to go forward all along the experiment, at one point, it’s just turning and making a loop on itself.

 

 

This behavior is due to some magnetic perturbations in the room: we took a compass and checked it everywhere in the room. After sampling every area, we found that the north was actually pointing in other directions in several parts in the room. Thus, our system is handy in the way that no matter which direction the robot is pointing towards, it’ll go in the direction you input with the controller. Besides, the errors made with the time (the orientation difference) would be totally solved because the orientation wouldn’t matter any longer with such a system.

But the system would only work in particular areas (with no magnetic fields) and this is something that we have to solve within the next articles. Ideas about accelerometer and gyroscope came out, or trying to use the drone to help the robots, or even implement a PID.

Comments are closed.